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ABSTRACT. We study the large time behaviour of the Fisher-KPP equation
Otu = Au+u—u? in spatial dimension N, when the initial datum is compactly
supported. We prove the existence of a Lipschitz function s°° of the unit sphere,
such that u(t, x) approaches, as t goes to infinity, the function
Ue., (\xl Cet N2 e (i))
Cx ||

where Ucx is the 1D travelling front with minimal speed ¢« = 2. This extends
an earlier result of Gértner.

1. Introduction. The paper is devoted to the large time behaviour of the solution
of the reaction-diffusion equation

Ou=Au+ f(u), t>0,zecRN (1)
u(0, z) = up(z), r RN, (2)
We will take
fu) = u(l —w);
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thus f is, in reference to the pioneering paper [19], said to be of the Fisher-KPP
type. The initial datum ug is smooth and there exist 0 < Ry < Rs such that

Ve e RY, 1gp, (z) <uo(z) < 1p,, (z), (3)

where 1 4 is the indicator of the set A and Bp, is the ball of RN of radius R centered
at the origin. By the maximum principle and the standard theory of parabolic
equations (see for instance [17]), equation (1) has a unique classical solution wu(t, z)
in C%([0, +oo[xR¥Y[0,1]) emanating from wuy. The first and most general result
is due to Aronson and Weinberger [1]. The solution u spreads at the speed ¢* =

24/f'(0) = 2 in the sense that

min u(t,z) - 1last— 4oo, forall 0 <c < ¢
jol<et

and

sup u(t,z) - 0 ast — +oo, for all ¢ > ¢*.
|| > et

The goal of this paper is to sharpen this result.
Let us briefly recall what happens in the case N = 1. Equation (1) with N =1
reads
Ou = Opzu+ f(u), t>0,z€eR. (4)
It admits one-dimensional travelling fronts U(z — c¢t) if and only if ¢ > ¢* = 2 where
the profile U, depending on ¢, satisfies

U'+cU + f(U)=0, z€eR, (5)
together with the conditions at infinity
IEIPOO U(z)=1 and xk&loo U(z) = 0. (6)

Any solution U to (5)-(6) is a shift of a fixed profile U,: U(z) = U.(z+ s) with some
fixed s € R. The profile U« at minimal speed ¢* = 2 satisfies, up to translation,

U (z) = (x 4+ K) e ® + O(e”1+0)%) " as 2 — 400

for some universal constants K € R and 79 > 0. The large time behaviour of (4)
has a history of important contributions, we only list two lasting ones. The first
is the paper of Kolmogorov, Petrovskii and Piskunov [19]. They proved that the
solution of (4) starting from the initial datum 1(_, ] converges to Uc. in shape:
there is a function
o (t) = 2t + 015400 (1),
such that
lim w(t,z+ 0°°(t)) = Uex(x) uniformly in z € R.

t——+oo
The second contribution makes precise the 0°°(¢): in [5], Bramson proves the exis-
tence of a constant z.,, depending on ug, such that

3
o™ (t) =2t — ilnt—xoo + 015 400(1). (7)

Formula (7) was proved through elaborate probabilistic arguments. As said before,
the problem, as well as more complex variants of it, are currently the subject of
intense investigations. See for instance [20] for an account of them.

In several space dimensions, the asymptotics have been pushed less far. In
the framework of the Fisher-KPP equation that we are studying, the Aronson-
Weinberger result is made precise up to O(1) terms in Gértner [12]. If N is the
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space dimension, the main result of [12] is that, for every A € (0, 1), the level set
{u = A} is trapped, for large times, between two spheres of radius

N +2

c*

R(t) = C*t - Int + Ot—>+oo(1)

The Ot 100(1) terms are not studied. It is shown by the second author in [25] that
one cannot get rid of these terms, in the sense that generally the difference between
the radii of the spheres does not tend to zero as t — +oo.

Gartner’s contribution is probabilistic, and a PDE proof of his result is provided
by Ducrot [8], adapting to higher dimension the proof of (a weaker version of)
Bramson’s formula (7), given by F. Hamel, J. Nolen, L. Ryzhik and the first author
in [15].

When the coefficients of the equation actually depend on « in a periodic fashion,
as for instance for the equation

ou = Au+ p(z)u —u?, t>0, zeRY,

with g periodic and positive (actually, more general assumptions on g can be al-
lowed, as well as inhomogeneous diffusion terms, or the presence of advection), a lot
is now known on the spreading speed, or, in other words, the position of the level
sets up to Oy 100(1) terms. The first result in this direction is Freidlin-Gértner
[13], which gives, through a probabilistic approach, an almost explicit expression
(the Freidlin-Gértner formula) of the spreading speed in each direction. Several
proofs and generalisations of this formula have been given, by various approaches:
viscosity solutions [10], abstract dynamical systems [28], PDE approach [2], [24].
Let us mention an important contribution [27], which generalises Gértner’s result
to periodic functions p(z), by computing the relevant logarithmic shift. This work
also generalises [16], a contribution that computes the shift for periodic u, but in
one space dimension.

Coming back to (1), the goal of the present paper is to show that it is actually
possible to make precise the Oy, 4+ (1) in Gértner’s expansion in terms of a function
5% depending on the spherical variable. Our result is the

Theorem 1.1. Let ug satisfy assumption (3). There is a Lipschitz function s>,
defined on the unit sphere of RY, such that the solution u of (1) emanating from
ug satisfies

N +2
lim sup |u(t,x) — U, | || — cut + + Int + s (i) -0
L7400 yeRN Cx |JC|
with ¢, = 2.

This completes the result of [12]. At this stage, let us anticipate the proof of
the theorem, and let us give a brief explanation of the logarithmic shift observed
here: it can be decomposed into two shifts having different origins. One is due to
the curvature term Nc—:l Int, it systematically arises in this type of large time issues
for reaction-diffusion equations, the nonlinearity f does not need to be of the KPP
type. See for instance [26], [29]. The other is the one-dimensional shift %lnt, it is
typical of the KPP nonlinearity. All this will be made clearer in Section 2.

Theorem 1.1 is in contrast with a recent paper [23] of the first and third authors,
which studies (1) when the initial datum is trapped between two planar travelling
waves. In this setting, the logarithmic shift is C%lnt, as in the one-dimensional case.
However, the dynamics beyond the logarithmic shift is given by that of the heat
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equation on the whole line. This last equation, though extremely well-behaved as
far as the regularity of its solutions is concerned, exhibits solutions that do not
converge, as time goes to infinity, to anything. However, this last feature holds for
reaction-diffusion that need not be of the KPP type, see [22].

Before starting the proof of our results, let us make a few remarks. The first
one concerns the assumption (3), which does not encompass, strictly speaking, all
compactly supported initial data. For a general (nonnegative, nontrivial) compactly
supported initial datum, there exist K > 1 and o € R" such that

1
Ve e RV, E]_BRI (x —x0) <wp(z) < Klp,, (z — 20).

The left inequality is in fact inconsequential, the whole paper would hold under
this assumption without any modification. The right inequality would not alter

our conclusions, either; to obtain the compactness of the solutions in the area
+2

Int one should simply work with the nonlinearity f(u) = Ku—u?,

which is obviously larger than u — u2.

Let us also mention that it would be certainly interesting to understand sharper

asymptotics of u(t,x). In one space dimension, a full expansion has been proposed,
in the formal style, in [9], or with another approach in [4]. The next term in the
expansion of the shift is computed, in a mathematically rigorous way, in [21]. The
expansion is pushed even further in [14].
Let us finally say that the observed behaviour is quite typical of Fisher-KPP equa-
tions with second-order linear diffusion. Another important class of nonlinearities
F(u) in (1) satisfies £(0) = f(1) =0, f/(0) < 0, f/(1) < 0, with [, f(u)du > 0. A
typical example is

|| ~ cut —

ﬂmzuw—@u—m,o<9<%
In such case, a statement of the same type as Theorem 1.1 is contained in [26], with
the important difference that the logarithmic delay is solely due to the curvature
terms; the dynamics beyond the shift is the same as the one presented in Theorem
1.1. And, although the phenomenon does not look so remote to the one displayed
in [26], it is quite different in nature, as the convergence to the wave is dictated by
what happens in the region where the solution takes intermediate values. A similar,
and recent contribution [7] treats the porous medium equation with Fisher-KPP
nonlinearity; although the nonlinearity is the same as in the present paper, the
result is of the type of [26] (although the dynamics beyond the shift is not made
precise when the initial datum is nonradial), this is due to the fact that the solution
does not have a tail that would govern the overall dynamics. We end this series of
remarks by recalling a result of Jones [18], stating that the level sets of the solution
of (1), whatever the nonlinearity is, will have oscillations only of the size Oy 1o (1).
This is a consequence of the following fact: if A is a regular value of u, the normal
to the A-level set of u meets the convex hull of the support of the initial datum. A
very simple proof of this fact is given by Berestycki in [3].

In the next section, we transform the equations so as to uncover the basic mech-
anism at work, namely the fact that the whole phenomenon is dictated by the tail
of the solution. The subsequent sections are different steps of the proof of Theorem
1.1, this will be explained in more detail in Section 2.



N-DIMENSIONAL FISHER-KPP EQUATIONS 7269

2. Preparation of the equations, strategy of the proof, plan of the paper.
There is a sequence of transformations that bring equation (1) to a form that will
make clear that the region |z| ~ v/t in the moving frame, that we will subsequently
call the diffusive zone, dictates the whole dynamics.

From now on, we take ¢t = 1 as initial time and (2) is replaced by w(1,x) = up(x).
This will be handier in view of the following transformations and, since equation
(1) is invariant by translation in time, there is no loss of generality.

1. We first use the polar coordinates

x+—>(r:\x|>0,@:£€SN*1)

]
then (1) becomes

N -1 A
Oru + eu—l—u—uQ, t>1,r>0, 0¢

atu = 8rru+ 5 SNfl'
T

,
Here, Ag is the Laplace-Beltrami operator on the unit sphere of RN. Its
precise expression will not be needed in the sequel. The initial condition
reads u(1,r,©) = ug(r, ©).

2. Let us believe that the transition zone where w is neither close to 1 nor 0 is
located around R(t) = 2t — kInt (k to be chosen later) and choose the change
of variables ' = r — R(t) and u(t,r,0) = ui(t,r — R(t),©). We drop the
primes and indexes, and (1) becomes

N -1 k Agu

Optt = Optt -~ Dt (2= )0+ CES T 2 FE T u?. (8)
The equation is valid for ¢ > 1, r > —2t + klnt, and © € SV~! and the initial
condition becomes u(1,r, ) = ug(r + 2,0).

3. To unreveal the mechanisms at work in the tail of the solution, we take out
the exponential decay of the wave U.«, and set u(t,r,0) = e "v(t,r, ©); the
equation transforms into

N -1 k Aegv

ooy v A Ul Rl o vy s

with¢ > 1,7 > —2t+kInt, © € S¥~! and initial datum v(1,7,0) = e"ug(r +
2,0).

4. We now choose k. Our first guess is that the term in Agv will not matter
too much, because it decays like t=2 (an integrable power of t), except in
the zone r ~ —2t, where we know (for instance [1]) that u(¢,r, ©) goes to
1 as t — 4o00. Hence we expect the dynamics to be like that of the one-
dim}e\?sional equation. On the other hand, in the advection term, the quantity

-1
r+ 2t — klnt

Opv = Oppv + ( e "2, (9)

is nonintegrable in ¢, except for extremely large r. Thus we

k
wish to balance it with the — term. However, instructed by the large time

behaviour in one space dimension, we keep in mind that we should keep the

3
quantity T factoring d,v — v. Hence we choose

N -1 3

. . (10)
that is
_N+2 N+2

k
2 Cy
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In the sequel, we will keep the notation k, keeping in mind that k is given by
the above formula.
5. In order to study (9) in the diffusive zone, that is, the region r ~ Vt, we use

the self-similar variables £ = %, 7 = Int. The variable © is unchanged:
T 1
w(r,&,0)=w|(Int, —,0 | = —v(t,r, O). 11
(@) =i (me.22.0) = Zoie.ro) ()
Then (9) becomes

~ N eTAGrLZ} -3 N § N %T—{e% A2
0r 0 + L = G T eI — )2 + h(7,£)e” 2 0c (h(T, &)+ 2>w e W,
(12)
where
Lw = —0gew — gagw —w,
and

N-—-1

W) = 2+ e /2 —kre T
Equation (12) is valid for 7 > 0, £ > —2e% + kre™2 and © € S¥~!. The
lower bound on £ is a very negative quantity if 7 is very large. As the range
of negative £ that are relevant will turn out to be extremely modest (we will
always have £ > —e~G=97 that is, r > —t for some & € (0, i)), we will not
mention this constraint on £ in the sequel. Finally, the initial datum at 7 =0
is

12}0(5, @) = efuo(é' + 2a @),
therefore still compactly supported. Since u € (0,1), we also have the upper
bound
W(r,€,0) < exp (g7 = 7). (13)

Since k = &=L + 2 we have for all § € (0, 3):

h(r,€) = _; +O(€e7™/?) for € < /2707 that is, r < 179,
, O(1) for & > e(1/2=97 that is, r > t17°.

The information on h that we are going to retain is however the followig
weaker version for § € (0, 1):
3
h(r,€) = 3 + 0(67(%76)7—) for € < €°7, that is, r < t1/2+9
’ O(1) for € > &7, that is, r > t1/2+9,

6. To construct sub and super solutions, we will need to translate the solution

w. So let us set
£ (r) = e~ (20T

we will often use the notation féi and not mention the dependence in 7, as
things will - hopefully - be clear from the context. The constant § > 0
will be suitably small and, in any case, less that 1/4. The point £ = & (7)
corresponds, in the (¢,7,©) variables, to r = t% in the moving frame, that is,
far ahead of the supposed location of the front (r = O(1)), but not quite as
far as the diffusive zone (r ~ v/t). The point £ = &5 (1) therefore corresponds
to r = —t°, that is, far at the back of the front location, but, again, not quite
as far as —v/.
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In order to consider at once the different zones involved, we let £5(7) denote
one of the following three functions:

& (), &), o,

and define the translations

UAi(’T, 5) = ’lZ)(T,f - 55(7—))’ (14)
Equation (12) transforms into the following three equations (depending on
the translation we made):

_ _ _z _ 3\ .
O + L =(665 + M1, &+ &)e™ 2 ) Oe — <h(7’,§ + &) + 2)w
- . (15)
L Agw _ BT (E4Es)eE 2

(2e2 + &+ &5 — kre7/2)2 ’
which are valid for 7 > 0, £ > —& — 2e2 + kre”2 and © € SV~1. As
before, the lower bound for £ is in all cases very negative when 7 is large, thus
negligible. The initial datum at 7 =0 is

Wo(&,0) = 5T O yg (€ + £5(0) +2,0),

still compactly supported.
7. The last transformation turns £ into the self-adjoint operator

Muw = -9 w—i—(ﬁ—%)w
e 16 4
This amounts to setting
2

i(r,€,0) = e Fu(7,€,0). (16)

The equation for w is
A - _ g2 T
O-w+Muw = 4 (1, &) Oew+la (7, §) w+ ow e T (EtEs)e 2

(5 + &5+ 2er — k;Te*%)z
(17)
which is valid for 7 > 0, £ > —&s — 2e? + kTe~2 (as usual very negative for
7 large) and © € SV~1. The initial datum at 7 =0 is

wo(€,0) = eSHE O+ y (6 1 £5(0) + 2,0), (18)

still compactly supported. The functions {1 and ls depend on h and are given
by

_T 3
11(775) :6£5+h(7—7£+£5)6 /21 12(7—75) = _5 _h(77£+§5) - %ll(,rvg)'
They satisfy, for £ > 0 and whatever &; is, the following estimates:
(r,6) < Ce (3707

1

19
la(7,6)] < C<€€(25)T F1leigs>esr + 6(55)71&5595*)’ 19)

the constant C' only depending on N and 4.

Equipped with all these transformations, we are now able to explain the core of
the proof of Theorem 1.1. It is inspired by the ideas of [20] in one space dimension,
with some novelties due to the transverse variable. Our main step will be to prove
the
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Theorem 2.1. Let w be the function defined in the above transformation 5. There
exists a positive Lipschitz function a® on the unit sphere such that
3¢2

lim sup e 16 [i(7,£,0) — a™(0)pe(§)| =0,
T—400 £eRT,©eSN-1

where ¢o(§) = 56_52/4 satisfies Loy = 0.

The function a®° is possibly more regular than Lipschitz. Proving some addi-
tional regularity would entail nontrivial additional technicalities, we will explain
this when it comes to studying the regularity in ©.

The parallel step in [20] for N = 1 was to prove, for the equation

3 . s .3
aTer,cw:—56—5(95@—@%7—5@2@2, >0, (€R,

the existence of a constant o > 0 such that

w(r, &) —>ﬁ+ aoofefgz/{ in {{ > e_(%_‘s)T}.

The main effort was to prove the compactness of the trajectories (1 (7+7T,&))r=o as
T — +00; because the limiting trajectories satisfied the Dirichlet heat equation in
self-similar variables, this entailed the convergence to a single Gaussian. To prove
the compactness, we used a pair of sub/super solutions very much in the spirit of
Fife-McLeod [11]; that one could actually use ideas from the analysis of bistable
equations came as a surprise to us.

However, the barriers devised in [20] rely on the good sign of the disturbances
(that is, the exponential correction in the function k) which allowed them to be sub
and super solutions all the way down to & = 0. Because we are now dealing with a
more complex equation, we can no longer rely on sign considerations, and we devise
a pair of barriers that are sub and super solutions for more robust reasons than in
[20]. While still being radial, these barriers rely on a technical innovation in the
vicinity of & = 0, that is, if one thinks very much about the Fife-McLeod sub/super
solutions, quite in the spirit of [11] once again.

Once this is achieved, an additional issue will be to deal with the variable ©:
as T — +o0o, the Laplace-Beltrami operator will disappear from the asymptotic
equations. That is, asymptotic regularity in © will have to be retrieved with bare
hands.

Once convergence in the diffusive area is under control, the next step is to fix
the translation o (¢, ©). We choose it such that

U, (r+ o> (t,0)) =e "v(t,r,0)
r=té r=t9
That is,
o®(t,0) = —Ina>(0) + O(t™°).
We then prove the uniform convergence to U, (r — Ina®™(0)) by examining the
difference
o(t,r,0) = |v(t,r,0) — e"Ue, (r + o™(t,0))|

in the region {r < #°}. For N = 1, it turned out in [20] that ©(¢,2) was a sub-
solution of (a perturbation of) the heat equation

Vi= Ve +07%), t>0,t0<z<t’
V(t,—t) = et t>0 (20)
V(t,t°) = 0, t > 0.
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The condition at x = —t° simply comes from the fact that v(t, z) decays, by defini-
tion, like e* at —oo. Although the domain might look very large, its first Dirichlet
eigenvalue is of the order t~2°, hence a much larger quantity than the right hand side
of (20). Thus V(¢,x) could be proved to go to 0 uniformly in = as ¢t — 400, which
implied the sought for convergence result. The same idea will work here again, up
to the caveat that a® is only Lipschitz in ©, something that does not go very well
with taking a Laplace-Beltrami operator. A simple regularisation argument will
settle the issue.

Our experience with working with multi-dimensional reaction-diffusion equations
is that the main additional difficulty is the transverse diffusion, which, in a very
paradoxical way, does not help. This is not a rhetorical argument: its presence is
really what prevented convergence in the earlier paper [23]. This explains why we
have to be extra careful with the estimates.

The plan of the rest of the paper is the following: in Section 3, we construct
the announced radial barriers that will be used to control solutions of (17) with
&s = 0 that are initially compactly supported. In Section 4, we successively prove
Theorem 2.1, then Theorem 1.1. The paper ends with a discussion.

3. Radial barriers. As announced in the previous sections, we wish to construct
a radial sub-solution in the region {& > &F(7)} (that is, r starting far ahead of the
front) and a radial super-solution in the region {{ > &; (1)}, (that is, r starting
far at the back of the front). From now on we drop the © variable; in the (7,¢)
variables, the two end points 5?(7’) will rejoin at £ = 0 as 7 — +4o0: this will
provide an estimate of the solution in the self-similar variables at £ ~ 0, whereas
the main body of the sub and super solutions will estimate w in the diffusive zone.
For radial functions, equations (17) reduce to

2 T
Orw + Mw = 13 (7,£)0cw + o (1, &)w — T T (EHEa)e 2 (21)

This part is the most technical of the paper, we will try to keep the computations
as light as possible. Many of them are in the spirit of those of [20] or [23]. Let us
introduce some auxiliary quantities.

First, let ¢o(&) = 56_52/4, it solves

Lo=0({>0), ¢(0)=d(+o0)=0. (22)
Any solution of (22) is a multiple of ¢y. And its counterpart with respect to

2
transformation (16) is ¢o(&) = ¢e=% which satisfies Mg = 0, ©0(0) = po(+00) =
0.
For a > 0, we call

2

M(@) = 1 dra(€) = cos (5-€).
Namely, Ai(a) is the first Dirichlet eigenvalue of —A on (—a,a) C R and ¢4 is
the associated eigenfunction with maximum equal to 1. We choose ag € (0,1)
small enough to have Aj(ag) > 100. It will be suitably decreased in the sequel,
independently of all other coefficients and variables. We set

A= A(ag),  91(§) = P1,40(6)-
Moreover, let 1 () be a nonnegative smooth function, equal to 1 if £ < 4, and

zero if € > %am and y2(€) be a nonnegative smooth function, equal to zero if £ <1
and to 1if & > 2.
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We are now in a position to construct the sought for super and sub-solutions for
(21):
Proposition 1. There exist siz functions ¢ (1), ¢ (1), ¢E(7) which satisfy:
L)
—T
% <gq(r) < Ce (2707 0<gq; (1)< Ce (=07 (23)
for some C > 1,

e there are (, > ¢, > 0 such that, for all T >0, (1) € KanO] and (t(7) > 0,
(~(r) <o.
In addition, the function
W(1,€) = (T ()0 (€) + af (NP1 () + aF ()72(€)e™¢/1° (24)

is a super-solution to (21) with & = &5 in the range 7 > 0, & > 0, whereas

w(r,€) = ¢ (T)@o(€) — a7 (N1 () — g5 (T)2(€)e¢ /1 (25)
is a sub-solution to (21) with & = E;‘ in the range T > 11, £ > 0, for some 1 > 0.

Before proving this proposition, we need to state two ODE statements.

3.1. Two elementary ODE statements. Consider the system
G+q= Co(C-i-A/)e_f%_‘s)T (26)
(= Colg+¢e o)
By elementary Cauchy theory, this system has a unique solution for any given pair

of initial data.

Proposition 2. Let (g, () be the solution to (26) with parameters Co > 0, v € [0,1]
and initial conditions
q(0) = qo > 0, C0)=¢ >0
satisfying, for some hg > 0,
q0

ot < hyg, — < hg. (27)
qo Co

Then, there is K > 0, only depending on Cy and hg, such that
VT >0, 0<(o<C(7)<KG,  qoe " <q(r) < Kge GO (28)

Proof. From the first equation in (26) we see that the function e”q is increasing as
long as ¢ remains nonnegative. Then, by the second equation, this holds true for (.
As a consequence both ¢ and ¢ remain positive throughout their evolution. The
lower bounds for ¢ and ¢ then follow.
For the upper bound on ¢, we subtract the equations in (26) to get
1

¢=d+(Co+1)g—Core” 27T <4+ (Co + 1)q.
Then, the first equation yields

i+tas< coe—%—(‘”(wcw/ (d+(Co+1)q))-
0
We derive from (27)

j+q< KeGOT (hoqo +q +/ q)7 (29)
0



N-DIMENSIONAL FISHER-KPP EQUATIONS 7275

where K denotes some positive constant, only depending on Cy and hg, whose
value can be possibly increased along the proof. From this we shall infer the upper
exponential estimate on ¢. It is enough to prove the existence of some (possibly
larger) K such that ¢(7) < Kqo for all 7 > 0. Indeed, once this is at hand, we find
that

d
%(q(T)eT) < Ke(%H)qu(l +7)< que%T,

where we have used that § < 1/4, which implies that ¢(7) < Kqoe 7. Plugging
this information back into (29) yields ¢(7) < Kgoe= (297, So, let us concentrate
on the global upper bound on gq.

We first prove that ¢ grows at most exponentially fast, namely, there exists A > 0
large enough such that ¢(7) < 2¢oe™” for any 7 > 0. Indeed, if this property fails
for some A, defining

T:=sup{T > 0|Vs €[0,7], q(s) < 2q0€AS}a

we derive q(7) = 2goe™™ and

d
4(7) = = (200¢™7), . = Ag(7).
Then, owing to (29), using that ¢(s) < 2gpe®® for s € [0, 7] we deduce that
hogo fo% q ho 1
A<-1+K|—+1+=— | <K(—+1+—).
<t (G g) <n(3rieg)

This is a contradiction for A large enough, depending algebraically on K and hyg.
Let us now improve this exponential bound to a constant. From (29) we get

2
G< Ke =97, (ho + 207 4 KeAT).

Using again the crude estimate 1 40> 17 we infer the existence of another positive
constant K7, depending on K, hg and A, such that

g < Kigo(1+A=1/07),
Then, iterating n-times, we get

q< ano(l + e(A_”/4)T).
When n > A/4 we have obtained the desired upper bound.

Finally, for the upper bound on (, we derive from (26) and (27)
(< Ke GI7(¢ + ),

where again K is some constant depending on Cy and hg. This implies that

d 1
¢+ ) < Ke Tt

from which we deduce the desired bounded. This concludes the proof. O

We now deal with the following system:
g+q= CoCe (37O, T>T
¢= —Colg+Ce =707), 7>,

where the initial time 7 is a parameter to be chosen. This system has a unique
global solution and we have the

(30)
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Proposition 3. There is 71 > 0 depending on Cqy for which the solution to (30)
with initial data q(m1) =0 and ((m1) = 1 satisfies:

o 1/2<((r) <1 forallT>m,

o 0<q(r) <2Coe= @97 for all 7 > 7.

Proof. Let 7o > 71 be such that ¢ > 0 in [r,72). We infer from (30) that in the
interval (71, 72) the function ¢ is positive and thus ¢ < 0. Then, in such interval,

d
7 (a(1)en) = CoC(r)e 3T < Coel 40,

T
which implies that

Co
< ——

1< 555
Plugging this bound as well as ( < 1 into the equation for ¢ and integrating on
(11, 72) we obtain

(397 < 90pe- (307,

Co(2Cy + 1) —(L—&)r
>1— —— 7 2 1,
(mzl-—5—5e

Recalling that § < 1/4, we can therefore choose 71 large enough, only depending
on Cp, in such a way that, say, ((m2) > 1/2 in [y, 72]. This means that, with this
choice, 1/2 < ((7) < 1 for all 7 > 7;. From this, the bounds for ¢ are readily
derived. O

3.2. Super-solution. We want to prove Proposition 1 for super-solutions. So we
look for a super-solution to (21) with & = & of the form (24) and ¢1, g2,  are pos-
itive functions that will be suitably chosen, with C > 0. (We drop the + exponents
on qi, g2 and ¢ in this sub-section for simplicity). Let us set

2 _, T
Nw = drw + Mw — 1 (7,€) 0w — p(7, §)w + e~ 5 ~(EFE e 2,
We want w to satisfy Nw > 0 for 7 > 0, £ > 0. A sufficient condition for that is
Nw >0,

with
Nw = 0;w + Mw — I1(1,£)dcw — Iz (1, E)w;

in other words we have dropped the positive nonlinear term.

We remark here that we are in the spirit of Fife-McLeod [11]: because the null
space of M is not empty, the best we can do with a bare hand computation is
estimating the solution, but not proving its convergence, as we have no idea of what
multiple of pg will be eventually picked. In [11], a similar computation estimated
the position of the front, but did not prove convergence to a wave, as the translation
invariance would not permit to guess the correct translate of the wave.

1. The region 0 < ¢ < %. This is, in comparison to [20] and [23], the newest

part. Here, we have v, = 0 since ag < 1, so that, using Myg = 0 and —¢] = A\1¢1,
we have:

2
o= (40t 3= Do (006 + 001 )

e - c(w, €)¢h + (. 5>soo).
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Recall that
61(€) = cos (2’;05) :
so that
ap

|49 < VA 61(€) on 0, 5

The functions o and ¢ are bounded from above by a universal constant C', whereas
¢1 stays above 1/2/2 on the interval [0,ao/2]. The term Iy is estimated in (19) by
C’e*(%*‘s)T, where, here and in the rest of this proof, C' will be a suitably large
constant independent of g1, g2 and . In the range that we consider for &, the first
indicator function appearing in the estimate (19) of Iy vanishes after a (controlled)
finite time and therefore 5 is estimated by the same term as ;. As a consequence,
because we look for ¢ satisfying ¢ > 0, we infer that

jgw >d 4+ (M —CVAN - C)gy — Cee (=0T,
1

We choose ag > 0 such that A; is large enough to have

M —CVA - C>1,
this will fix ag once and for all. And so, a sufficient condition to have N@w > 0 in
this region is

41 +q > CCe” 377, (31)

2. The region ¢ large. By this, we mean that £ will be larger than a constant
& > 2 that we will fix in the course of this section. In any case we have v;(£) =0

and 72(€) = 1. And so, using ¢ > 0, we find that

63452 _ % —|l2(7,6)| = g) q2 — <(l1(7‘, &) p + o (T, 5)800)652/16~

We estimate 1;(7, ) from (19) as
l1(7,§)] < Cand |Ip(7,§)| < C(E+1).

Thus, the term in factor of go can be bounded from below by 6%52 — %C’f —(C+ %)
Now, we fix &y large enough so that

2 J—
1o i

3., 9 5
22 Zog - 2> 1.
S - 50&—(C+2)>

Finally, recalling that ¢o(§) = 56’52/8, whence ¢} decays as 526*52/8, we derive
from (19)

2
117, ) (&) + 12(7,€)po (€)] € /16
< ClL &% + 1y€]e=€ /16
=¢ <§2€_(%_6)T T &y eosesr TELe oo coor e_(%_é)T) e/
< Ce=(z=9)7

Indeed, when {+&5 < €97, we use the boundedness of (§+§2)e’£2/16 on R and when
E+& > %7, we bound 56_52/16 by e~€"/32 which decreases at least as e~ (397
as £ > e — &5 - Then, the inequality Nw > 0 is satisfied if we have the sufficient
condition

G2+ o > CCe™ GO, (32)
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3. The region % < € < &. Notice that, in this range, the functions [; may be

estimated by Ce= (2797, The functions v; may take all values between 0 and 1,
and their derivatives are bounded. Thus we have

Nw = QLSOO - C(ll(T, )b + la(T, f)apo)
@6 + e /10 (M =l (7,6)0¢ — la(T, §)> (@711 + q2y2e ¢ /1)

> o — C(ll(ﬂ )0 + l2(7, §)<PO> i + deyze €/ — Clqr + g2).

To render Nw nonnegative in this range, a sufficient condition is to assume that
(31) and (32) are satisfied, so that ¢3 > —qi1, ¢2 > —qa. Moreover, ¢q is bounded
away from 0 in this range, so that the final sufficient condition is

(> Clgr + qo + Ce=E=m), (33)

4. Proof of Proposition 1 for super-solutions. From Proposition 2 there
exist positive functions ¢1 = g2 = 4 and ( satisfying the equalities in (31)-(33).
Moreover, ¢ > 0 and the bounds (23) hold. Define @ as in (24). By the three above
steps, W is a super-solution to (21) with { = &; in the range 7 > 0, £ > 0. This
proves Proposition 1 for super-solutions. O

3.3. Sub-solution. Proof of Proposition 1 for sub-solutions. We proceed as in the
preceding section for super-solutions. The nonlinear operator N is

2 T
Nw = 0w + Mw — 11 (1,£)ew — lo (7, )w + e T (EreN)e 2

and we want w, defined by (25) (we again drop the superscript ), to satisfy Nw < 0
for 7 possibly large and £ > 0. On the contrary to the previous section, we may not
drop the nonlinear term as it does not have the right sign. Moreover, the nonlinear
term is quadratic, thus a possible source of trouble. However, let us anticipate that
the solution w(r,§,0) of (21) with & = 0 will be dominated by a super-solution
w(T, &) of the type (24). We use the (quite non-optimal) estimate

w<C,
C once again possibly huge. Let us also notice that, for £ > 0, we have
37 2 37

7—§—(f+§;)e%§

2
so that, all in all, we have for 7 > 0 and £ > 0,

37 or

_ttez = 2
§5€ 2 e,

[V

eF SN 2« e(h-0)y,

The nonlinear term may therefore be included in l2(7,£), and a sufficient condition
for Nw <0 is
Nw<0,

with A having the same form as N before:
Nw = 0w+ Mw — 11(7,§)0cw — la(T, §w,

but with s now incorporating an additional Ce= (2797, From then on, the compu-
tations proceed in a similar fashion as before, yielding the following conditions for
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q; and (:
Q1+ a2 CCe™ 07 for the region 0<¢ < 3.

o+ g2 > CCe™ 5797 for the region & > &.
(< —C(+ g2+ Ce_(%_‘s)T)7 for the region % < €< &.

From Proposition 3, there exist positive functions g1 = g2 = 4 and ¢ solutions to the
three equations above in some interval (71, +00) only depending on C. Moreover,
¢ < 0 and the bound (23) holds. Then, the function w defined by (25) is a sub-
solution to (21) with & = f;r in the range 7 > 71, £ > 0. This proves Proposition 1
for sub-solutions. |

3.4. A sharp version of Proposition 1 with small parameters. Pick ¢ €
(0,1], 7 > 0 and consider the solution w(7,&) of

D+ Muw— (1, 0w~ b(r.w = [(r§) (r27, §>0)
w(r,0) = exp(—e’") (1 >7) (34)
lw(F,€) — epo(€)] < e=€7/16,
with B
|f(7, )] < 06726_52/16. (35)

€
Notice the inhomogeneous term f(7, &) that was not present in the equation covered
by Proposition 1. This inhomogeneous term is, however, harmless, as its treatment
will not require any new idea. The estimate on w(7,§) is the following

Proposition 4. For every € > 0, there exists T. > 0 such that, for all T > 7., and
for some universal C >0 and § € (0, 1), we have

lw(r,€)] < Cee ¢ /16(¢ + e~ (3-0(T—7))y,

Proof. In view of (35), we choose
Ce T

o2
We make a translation in time. Set 7/ = 7 — 7., with 7/ > 0 and W(,¢{) =

w(t' + 7.,&) = w(r,€). Given the assumption on f, we have W (7', &) < W (7', §)
with

1
=¢, thatis, 7. = 31ng +O0(1).

W + MW — (1) + 7, E)0eW — lo(r/ + 7, OW = ee ™ ~€/16 (/' >0, £ >0)
~ 5!
W(r',0) = exp (—ﬁ)
W(0,6) = epo(€) +ee /16

(36)
Moreover, due to (19), the functions I; satisfy for 7/ > 0 and £ > 0:
(7 + 72,8 < Ce3E=9e (2=
o' +7e,€)| < C¥ Ve GO 41

1 1 , 35*+63(%75>67(%75)7l

3(5—9) ,—(5—0)T

+CeHE e (70 153*“?{ 403 F 0~ (507
€

the constant C' only depending on N and §. A super-solution to (36) is then sought
for under the form

T, ) = C(F)po() + a1 (7)1 (€ (€) + aa(r11a(E)e /1
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The equations for the ¢; and ( are

G1+q >C{C+ s)ef(%*‘;)#, for the region 0 < ¢ < %.

Go+q2 > C(¢+ S)e_(%_‘S)T/, for the region & > &.
(=Cla+aq+ Ce—(%—@T')’ for the region % <E<L&,

a possible admissible set of initial data being ¢;(0) = ¢, (0) = e. Application of
Proposition 2 yields the desired upper bound for W and hence for w. We proceed
in the same way for a sub-solution leads to Proposition 4: a sub-solution is sought
for under the form

w(r,§) = (7 )p0(€) — a1 (T)1(E)71(§) — @2 ()12 (€)e /1.

with, this time, C < 0. The equations for the ¢; and ( , as well as their initial data,
are the same as above, except in the equation for ¢, where the right handside comes
with a minus sign. O

4. Convergence. As announced in Section 2, this section is divided in two parts:
in the first subsection, we prove Theorem 2.1, namely, what happens for r ~ v/t. We
use the barriers constructed before, and the fact that the solutions of the limiting
problem are quite simple. In the second subsection, we derive sharper information
at the border of the domain, that is, 7 ~ t°. We use this to control the behaviour
of the solution for finite r, thus proving Theorem 1.1.

4.1. Convergence to an angle-depending self-similar solution. We want to
prove theorem 2.1. Let @ be the solution of (12) with compactly initial datum g
and satisfying (13). The main effort in this section is to derive the compactness
of the trajectories (w(T + 7,&,0))rs0o in a weighted L> norm. As the asymptotic
problem will simply be the heat equation in the variables (7,£), convergence will
follow. Let us first translate the radial barriers into an effective control of the
solution.

Proposition 5 (1. Control of @ from above and from the back of the front). There
is a pair of positive functions (q4+(7),(+(7)) such that (4 is bounded and bounded
away from 0 by constants that depend only on the initial datum and the constants
appearing in the equation, whereas there is 6 € (0, i) such that q4 (1) = O(e*(%*‘s)T)
as T — +00. Moreover, for 7 >0, £ > &5 (1) and © € SN, we have

(6-¢5)? (6-¢5)?
0(7,€,0) < e (on(€ & () + 441 (o pon) €~ €5 () +e™ T8 )
(37)
(2. Control of @ from below and from the head of the front.) There is a
pair of positive functions (q—(7),(_ (7)) that satisfy the same estimates as for q
and (y in item 1 above, and such that, for & > 5;(7), T>1 and © € SV, we
have

(e—¢5)? (e—¢$)?
_ e

@(7,€,0) 2 (~(T)po(§ — & (1)) — - (7) ((1[0,%/2]451)(6 —& (1) +e 10
(38)

Proof. Let us prove Point 1. Let @ be the solution of (12) with compactly initial
datum 1. Perform transformations 6. and 7. in section 2 with 5 = £ . Then,
the new function w defined by (14) and (16) satifies equation (17) with & = &;
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and initial datum wp defined in (18). This is the same equation as (21), up to the
Laplace-Beltrami term. Moreover, wg(€, ©) is still compactly supported and the
upper bound (13) yields

w(7,0,0) < exp(—e’” — 5)7 (39)

that is, the Dirichlet condition is doubly exponentially small.

Applying Proposition 1, there exist three functions qf, (]2+ and ¢t such that w
defined by (24) is a super-solution to (21) and therefore to (17) with {5 = &5 in the
range 7 > 0, £ >0 and © € SN—L.

On one hand, if we choose ¢; (0), g5 (0) and ¢*(0) large enough, we have w(0, £) >
wo(&,0) for all € > 0 and © € SNV~! because wy is compactly supported. On the

other hand, we have from (23) that ¢i (7) > 5. Thus, from (39), we have, at the
expense of choosing C even smaller:

w(r,0,0) <w(r,0).

The comparison principle then yields w < w for 7 > 0, € > 0 and © € SVN~1.
Reverting to the original function w, we infer that the desired upper estimate holds
with gy = qi" + q;', ¢+ = ¢*, which, by Proposition 1, satisfy the properties stated
in point 1. of Proposition 5

Let us prove Point 2. Let @ be the solution of (12) with compactly initial
datum wg. Perform transformations 6. and 7. in section 2 with {5 = fg‘. Then, the
new function w defined by (14) and (16) satifies equation (17) with & = & and
initial datum wq defined in (18). Applying Proposition 1, there exist three functions
41, g5 and ¢~ such that w defined by (25) is a sub-solution to (21) and therefore
to (17) with & = & in the range 7 > 74, £ > 0 and © € SV -1.

At 7 = 11, we have that w < 0 for £ sufficiently large and then, up to multiplying
it by a small positive constant (which preserves the inequality M w < 0 because
the operator A is linear), we can fit it below the positive solution w for all £ > 0.
Moreover, at £ =0, w = 0 < w. We can therefore apply the comparison principle,
concluding the proof of point 2. of Proposition 5. O

Proposition 5 has the following corollary.
Corollary 1. For7>1,&>0 and © € SN, we have
|0,10(7, €, ©)| + |9t (, €, )| < Ce3/10,

Moreover, there are two constants 0 < k < k, and k1 > 0 such that, for T > 1,
£€<1and © € SV~ we have

k(& — kie”G7I7) <i(r,€,0) < (& + eI, (40)

Proof. Parabolic regularity yields the boundedness of 0,w, O¢t and Ogew in terms
of the supremum of w on the product of (7 — 1,7+ 1) x (£ — 1,£ +1) x SN~ Of
course the diffusion in © is degenerate, but it suffices to rescale © by the square
root of the diffusion at the point under consideration, and drop the useless estimate
in ©. Inequality (40) just comes from the analysis of w and w in the vicinity of

£€=0. 0

As far as the variable © is concerned, we need an additional argument.



7282 J. ROQUEJOFFRE, L. ROSSI AND V. ROUSSIER-MICHON

Proposition 6. There is C > 0, depending only on the data, such that, for T > 0,
£€>0and © € SN, we have

IVeid(r, €,0)| < Ce 3¢ /16,

Proof. Let @ be the solution of (12) with compactly initial datum wg. Perform
transformations 6. and 7. in Section 2 with s = £ . Then, the new function w
defined by (14) and (16) satifies equation (17) with {5 = &; and initial datum wq
defined in (18).

Let ©; be any coordinate on the unit sphere, and

wi(Ta 67 @) = 697‘,1‘-}(7—5 67 @)
As there is no dependence with respect to © in the coefficients of (17), the equation
for w; is very similar to that for w:
Orwi + Mw; = 11(7,8)0cw; + Lo (T, §w;
+ o 5 — 2%~ 5 (66 E
(E+&5 +2e2 —kre )
w;(0,£,0) = 0do,wp(§, O) compactly supported.

Multiplying the equation for w; by the sign of w; and using Kato’s inequality, as
well as w > 0, we find out that |w;| solves the inequation

A@|’w1|
(E+& +2e2 —kre?)

If now w; (&) is the supremum of |w;(0,§,.)| over the unit sphere, then we have
|wi(7, €, ©)] < wi(7, &) with

o0,w; + Mw; = 11(7', 5)3&@1 + lQ(T, g)m
w;(0,€) = w; (&) compactly supported.

Or |w;i| + Mlw;| — 11 (7, )0 |wy| — la(T, &) |ws| — <0.

Moreover, parabolic regularity yields, for the solution u(¢,r, ©) of (8):
IVou(t, —t°,0)] < C(1+1);

this translates into )
[Veou(t,—t°,0)| < C(1+t)e™",

thus |w;(7,0,0)] < Cez=¢"". Hence, w; may be controlled by a super-solution
similar to that constructed in Section 3.2, which proves the proposition. O

Remark 1. The referee pointed out to us that an argument of the same sort
could successively control the second derivatives, then the third derivatives, and
so on. It may be so, but this is not a completely trivial fact which, in any case,
requires additional arguments. Indeed, using the notations of the above proof, let
w;; = O0p,0,w be the pure second angular derivative of w in the direction e;. Let
w; the i** component of Vew. The equation for w;; is

Apw;
o — 1i(7,6)0cwi; — lo(T, §)wi;

Orwy; + Muw;;—

(E+¢& +2e5 —kre—F)°
2 -, T
= 2T (&g )e? (wwg; + wy).
The trouble is that the Kato’s inequality process will not work here, as the term

ST o Z £2
e%_(f+£5 )e2 —§Sgn(wii>wz’2
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will not have a definite sign, and it may be huge in the region & ~ e~7/2. The best
that can be expected at this stage, with no other ingredients, is a bound from above
for w;;, but it is not clear to us how to use it.

In order to bound wj;;, one can probably try to use the fact that the term is large
only on a very small support - as in [21] - to infer the boundedness of w;;, but it
would add quite a few technicalities. Therefore we decide to limit ourselves to the
Lipschitz regularity of w in ©, which is enough for the sequel. This will force us to
use arguments that are a little more abstract, but much less technical. In any case
we thank the referee for giving us the occasion to clarify this issue.

Proof of Theorem 2.1. Let w be the solution of (12) with compactly initial datum
wg. Perform transformations 6. and 7. in Section 2 with & = 0. Then, the new
function w defined by (14) and (16) satifies equation (17) with £ = 0 and initial
datum wy defined in (18).

Propositions 1 and 6 yield the compactness of the trajectory (w(T + .,.,.))T>0
in the L g norm, weighted by e87/16, Therefore, there is a function w* and a
sequence (T},), going to infinity such that

im0 (T, +7,€,0) — w(r,€,0) =0, (41)

the limit being locally uniform in 7, and uniform in (£,0). Moreover, w™ is
Lipschitz-continuous in all its variables, and (40) entails w*(7,0,0) = 0.

On the other hand, for any smooth function ¢ over the unit sphere, consider the
integral

we(7,€) = /SN_l w(r,€,0)p(0)do.

The equation for w,, is this time:

37

Orwy + Mwy, = 11(1,8)0cwy + lao(T,§)wy, — S / w?dO
SN—-1

wy,(0,6) = /SN—l wp(€,0)p(0)dO compactly supported.

Consider first ¢ > 0 on S¥~!. The integral term w?pdO is nonnegative, so
SN-1

the same type of super-solution as in Section 3.2 may be constructed for w,, just
by discarding this term. Moreover, the same type of subsolution for w, can also be
constructed, as we may simply estimate w, by a constant, and as the exponential

factor e¥ —€e? ig exponentially decaying in 7, as soon as & is just a little larger
than e~7/2. This yields the compactness of w, in the weighted L° norm, but w,
additionally satisfies a standard parabolic equation in the (7, §) variables. Therefore,
parabolic estimates hold, and a subsequence of (wy (T + .,.))r>0 converges, locally
in 7, and in the weighted L norm in &, to a solution wg’ of

{6Tw;°+/\/lwf;° =0, T€ER, £>0

wF(r,0) = 0. (42)

The same argument as in [20], Lemma 5.1, yields the convergence of the full tra-
jectory (wy(T + .,.))r>0 to a steady state solution of (42), namely, a multiple of
©o- This multiple has to be positive, because of Proposition 5, Point 2. We name
it a,po. If now the function ¢ is allowed to change sign, the result persists because
¢ may be decomposed into T — ™.
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The functional ¢ — a, is a nonnegative functional acting on the set of all
continuous functions of the unit sphere. On the other hand, (41) yields, for all
TeR:

appo(§) = /SN?1 w>(1,£,0)p(0)dO.

This implies the following cascade of facts. First, the function w* does not depend
on 7, we call it w™>(&,0). Second, the functional ¢ — «, is linear, so, combined
with positivity, it is a measure that we call g. Third, we have, for all £ > 0:

/ w(@)du(@)wo(§)=/ w™(€,0)p(0)dO.
SN-1

SN—1
This entails that w((i;)@) does not depend on &, call it a®(©). So, we have
$o
[ e@udue) = [ a=@)s©)e.
SN—I SN*I

so that p is absolutely continuous with respect to the Lebesgue measure, du(©) =
a™®(0)dO. Because w is Lipschitz in O, this implies that o is Lipschitz by its
above definition.

As a conclusion, we obtained the convergence of w(r, &, ©) as 7 goes to infinity
towards a™(0)yo(§) in the Lg“g norm, weighted by e§7/16, Reverting to the original
function w, we get the desired convergence. O

4.2. Convergence to the shifted wave. The challenge is now to transmit the
information given by Theorem 2.1 from the diffusive zone to the area of bounded
x. To achieve that goal, we need to estimate the solution precisely in the transition
zone, namley, z ~ t%, i.e. to understand the behaviour of the solution (7, &, ©) of
(12) in the area & ~ e~ (207,

We would like to write an equation for w(r, &, ©) — a®(0©)pe(£) and infer from
the analysis of the equation that this difference converges to 0 as 7 — 40c0. The
trouble is that we deliberately stopped investigating the regularity of a*°, and that
a term of the form

$o(§)Aea™
(€ +2ez — kTe*%)Q

will be present in the equation for the difference, something that is not so easy to
study as a® is only known to be Lipschitz. So, we use a regularisation. If (p¢)eso
is an approximation of the identity on the unit sphere, we set

aZ®(©) = (pe ¥ a™)(©).

Because o™ is Lipschitz and positive, we have a2® — Ce < a® < a2 + Ce. We
start with the following proposition.

Proposition 7. Let w be the solution of (12) with compactly initial datum .
Then, for every e > 0, there are 7. > 0 (possibly depending also on §) and n. > 1
such that, for all T > 7. and & € [£5 (T), 1] we have:

(a2°(©) — Ce) (£ — Ce~ B D)) <4i(1,£,0) < (a°(©) + Ce) (¢ + Ce™ (37T,
(43)
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Proof. We shall prove the upper estimate. For every ¢ € (0,1], there is, from
Theorem 2.1, a time 7. > 0 such that

(a2°(0) — Ce)go(€) — e 36 /16 < iip(7.,£,0) < (a2°(©) + Ce)gho () + ce 36 /16,

g

Perform transformations 6. and 7. in Section 2 with & = &£ . Then, the new
function w defined by (14) and (16) satifies equation (17) with & = &5 and initial
datum wq defined in (18). Then,

(a2(0) — Ce)po(€) — e /10 < w(r.,£,0) < (a°(©) + Ce)py(€) +ee ¢ /15,
Thus,
w(r,£,0) <w'(r,€,0)
where
Agw™

Orwt + Muwt = 1y(7,8)0cw™ + lo(7, Hwt + - —,
(5 + 2ez — kTe’f)

for £>0,0 € SV and 7 > 7., with datum
w*(72,£,0) = (a2°(0) + Ce)po(€) + ce~¢ /10

and Dirichlet condition ]

wt(7,0,0) = O(e ¢ ).
Consider now the difference
2(1,6,0) = w(1,£,0) — (a2(8) + Ce)po (§).
Then z(7,&, ©) solves an equation of the type
Agz
(f +2e7 — kTefg)

8TZ+MZ211(775)852’-1-[2(7',6)2“!‘ 2 +f(7_7£a®)7

with the force terme being estimated by
—£2/16 ,—7
e e
|f(1,€,0)] < CT
Moreover, the initial datum is z(7,£,©) = ce=€’/16 and the Dirichlet condition
z(1,0,0) = O(e*e& ). The 1/&2 factor comes from the Laplacian of a2°, that is cer-
tainly no more than a multiple of 1/¢2. By Kato’s inequality, we have |z(7, &, 0)| <
we(T,§), with
e~ Te—¢E/16
O0rWe + MW, = Ui (1,8)0¢we + lo(7,§)w: + C =
Application of Proposition 4 yields the right handside of (43) since £ is bounded.
As for the left handside, we work with a sub-solution defined for {5 = 53'(7'), and
replace the nonlinear term w? by a constant, due to the boundedness of w. The
proof follows the same pattern as above. O

Proof of Theorem 1.1. We revert to the (¢,r,0) variables, and to the function
v(t,r,©) defined in Section 2. Recall that the equation for v is
N -1 k A@?)
Vo — ___=er
)( v-v)+ (r 4+ 2t — klnt)?

r+2t —klnt
Also recall that the initial unknown u(t, r, ©) in the moving frame satisfies u(t, r, ©)
= e "v(t,r,0©). We apply inequalities (43) in the following range of parameters: we

0 = Oppv + ( e "2 (44)
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first pick e > 0. Then, fix dy € (0,1/100) and set § = %0. Consider 7 = t% so that
&= e=(2=90)7 There is . = e™ > 0 such that, for t > t., © € SV1, we have
(a(©) — Ce) (1 — CVE " "201%0/2) < y(t,1%°,0) < (aX(O) + Ce)(t* + C\/E15°t50(/2)),
45
We set
YE(r,0) = (a2°(0) + Ce)(r + CVE Vi),

then, inequation (45) becomes for t > t., © € SN~ 1,
vz (t7,0) S vt ¢, 0) < YF (0, 8),

Taking € even smaller and ¢, larger, we may assume that those functions are non-
negative. In the similar spirit as [23] Section 3, we define the upper and lower shifts
as

Vt>t., 0S8N U (r+s5(t,0)) =¢E(r,0)e"

r=t% r=t%

Note that sf are both well-defined. Moreover, recall the equivalent
Ue (1) =(r+ K)e " + Or—>+oo(€_(1+70)7’);

the implicit functions theorem yields, therefore for t > t. and © € SN 1,

1

1
s5(t,0) = —In(a>°(0) + Ce) + O35, Os=(t,0) = Ol

Moreover, the L°° norm of A@Sg: is bounded by a constant that may blow up
as ¢ — 0. Let us define v as the solutions of (44) for t > t., r € (—t%,¢%),
© € SN~ that have v(t.,r,©) as initial datum at ¢t = t., and that satisfy the
Dirichlet conditions:
VE( 9, 0) = YE(t0,0), v (t,—t%,0) =e ", v (t,—t%,0) =0,
for t > t., r € (—t%,t%) © € SN~! we have
v (t,7,0) <v(t,r,0) <vi(tr0).
The last step of the proof is to prove that the functions vZ(t,r, ©) converge to

e"U,, (r + sF), uniformly in r and © in their domains. Because ¢ is arbitrary, this
will imply the convergence of v. We set

VE(t,r,0) = vE(t,7,0) — U, (r + sT);

we have
N -1 k
+ + o + 1+
OV = OmVe +<7“i+2t—k;1nt t>(arvf V)
AgV; e + 1
(r + 2t — klnt)? — (T + UV +O(t1750)'

We use one last time the process consisting in multiplying the equation by the sign
of V£, then using Kato’s inequality and the positivity of U, + e "vZ. This yields
fort > t., r € (—t%,t%), 0 € SN=1 |[VE(t,r,0)] < Vai(t,r), where Vai satifies for
t >t and r € (—t% %)

—t —t N-—-1 E

1
Ve =0,Ve +(—
tre E+(r+2t—k‘lnt t

) (0.7 -V) + 0l

Vot —th) = et Vo(t,%) =0 Vo (t,r) = Ce.
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. . —+ .
We infer that both functions V_ (¢,.) converge to 0 as ¢ — +oo. The reason is
that the equation has lower order coefficients and right handside of order less than

1, whereas the first eigenvalue of the Dirichlet Laplacian on (—t%, %) is of order

t=2%0_ This heuristics in mind, we may find a barrier: the function

B A r
zZ(t,r) = 75 08| 125

. . . —+ . .

is a super-solution to the equation for V_, for ¢ larger than some (possibly quite
. —+

large) t. > 0. It is also larger than the values of V_ at the boundary {—t%, %},

and, for A large enough, can be put above Vj[ at time t.. This concludes the proof
of theorem 1.1 with s*°(0) = —In(a*(0)) which is at least Lipschitz. O

5. Discussion. Let us first mention that our result remains valid for more general
nonlinearities. For an equation of the form

Ou=Au+ f(u), t>0, xR,

it suffices to assume that f is concave and positive on (0, 1), with f(0) = f(1) = 0.
Thus f/(0) > 0 and the bottom speed is given by ¢, = 24/ f7(0). Our result becomes
the existence of a Lipschitz function s°° defined on the unit sphere such that

N+2
1nt+s°°(”“")) F0p400(1).

Cx |z

u(t,x) = U, <|a:| + Cut —

uniformly in 2 € RV. In the course of the proof, the nonlinear term is no more
u? but g(u) = f'(0)u — f(u), which is positive and nondecreasing on (0,1). Tt is
not clear to us whether the result would subsist by merely assuming f(u) < f/(0)u.
What would probably be true is a statement of the form

N +2

*

u(t,z) = U, (|x| +oept— Int + s> (¢, wal)>+oH+°°(1)’

with s°(¢,0) = O(1). Let us also mention that we could have given a slightly
different version of Theorem 1.1 by stating that, for every direction e € SV~ then

{u(t,z) = \}n{x =re, r >0} C {r= c*t—N 2lnt—s°°(e)+Uc:1()\)—i—otﬁﬁx,(l)}.

*

The analysis of the solution on the diffusive zone would have been slightly simpler,
in the sense that we would not have had to handle an asymptotically degenerate
diffusion in e. On the other hand, recovering the convergence at the O(1) spatial
scale would have been more delicate. Additionally, this would not have proved the
Lipschitz regularity of s in e. This last approach is, sometimes, better tailored to
the geometric situation, where the front has a preferered direction of propagation.
This is the case in the forthcoming paper [6], where the Fisher-KPP invasion occurs
orthogonally to a line of fast diffusion.

We may adapt the preceding ideas to asymptotically homogeneous models of the
form

Ou = Au + p(x)u —u®, (t>0, z € RY) (46)
where the function v(z) := u(x) — 1 satisfies
1 o 1

v(z) = EG + O\x|—>+oo(|x|T+5)a |Vv(z)| = [o[re + O|x|—>+oo(W)'

Theorem 1.1 becomes
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Theorem 5.1. Let ug satisfy assumption (3). There is a Lipschitz function s>,
defined on the unit sphere of RN, such that the solution u of (46) emanating from
ug satisfies

u@@)U@<M|gt%Nthw+swCzo+m%+mﬂ%
ifa>1, and
u(t,z) = U, (|x — et + N%Hlnt + s°°(|i|)>+ot%+oo(l),
ifa=1.

The shift W has already been identified by Ducrot [8], up to O(1) terms. His
assumptions are more general than ours, in the sense that he neither requires the
gradient estimate on v, nor the quantitative estimate for v(z) — %I‘* However, our
result goes one step further. Theorem 5.1 would probably hold without the error
estimate on v(z), one would simply need to be more careful in the construction of
sub and super solutions. On the other hand, we have not tried to push the limits
of validity of Theorem 5.1, and this might well be quite an interesting question.

The proof of Theorem 5.1 goes exactly along the same lines as that of Theorem
1.1 for o > 1, the term v(x) being thrown into the perturbative terms I;(7,§). Of
course they now depend on O, but in a smooth and exponentially small in time
fashion, so they do not require any additional arguments. When a = 1, the same
algebraic steps as in Section 2 reveal the presence of a nonperturbative term in
equation (9). More precisely, this equation becomes

N—-1 k N -1 k A

oy 5 RS Ll traraprmny  rviilernp s R Al

O = 87“r
tv vt ( r+ed—klnt  t  r+ct—klnt

)\ A@U —r 92
«t— klnt,0) — —e "v”.
+<U(T+C nt, ©) r—|—c*t—llnt)v+(r—|—c*t—klnt)2 e
(47)

To identify & we simply have to make sure that equation (47) behaves like the
Dirichlet heat equation, perturbed by higher order terms; thus the formula (10)
becomes
N-1 A 3
k

Cy Ca 2’

hence the shift. The remaining terms will be, in the self-similar variables, exponen-
tially decreasing terms. The method used to prove a gradient estimate in © for v
will then work exactly as in Proposition 6, thanks to the estimate on |Vv|.

We finally mention that we leave open the question of higher order expansion of
the shift, which is also quite an interesting question.
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